A Fast Hyperspectral Anomaly Detection Algorithm Based on Greedy Bilateral Smoothing and Extended Multi-Attribute Profile

نویسندگان

چکیده

To address the difficulty of separating background materials from similar associated with use “single-spectral information” for hyperspectral anomaly detection, a fast detection algorithm based on what we term “greedy bilateral smoothing and extended multi-attribute profile” (GBSAED) method is proposed to improve precision operation efficiency. This utilizes smoothing” decompose low-rank part image (HSI) dataset calculate spectral anomalies. process improves operational Then, profile used extract spatial anomalies restrict shape Finally, two components are combined limit false alarms obtain appropriate results. new considers both information an improved structure that ensures Using five real HSI datasets, this study demonstrates GBSAED more robust than eight representative algorithms under diverse application scenarios greatly

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Fast Anomaly Detection Algorithms For Hyperspectral Images

Hyperspectral images have been used in anomaly and change detection applications such as search and rescue operations where it is critical to have fast detection. However, conventional Reed-Xiaoli (RX) algorithm [6] took about 600 seconds using a PC to finish the processing of an 800x1024 hyperspectral image with 10 bands. This is not acceptable for real-time applications. A more recent algorit...

متن کامل

Greedy Bilateral Sketch, Completion & Smoothing

Recovering a large low-rank matrix from highly corrupted, incomplete or sparse outlier overwhelmed observations is the crux of various intriguing statistical problems. We explore the power of “greedy bilateral (GreB)” paradigm in reducing both time and sample complexities for solving these problems. GreB models a lowrank variable as a bilateral factorization, and updates the left and right fact...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Kernel-Based Anomaly Detection in Hyperspectral Imagery

In this paper we present a nonlinear version of the wellknown anomaly detection method referred to as the RXalgorithm. Extending this algorithm to a feature space associated with the original input space via a certain nonlinear mapping function can provide a nonlinear version of the RX-algorithm. This nonlinear RX-algorithm, referred to as the kernel RX-algorithm, is basically intractable mainl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs13193954